LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Leishmania donovani Targets Host Transcription Factor NRF2 To Activate Antioxidant Enzyme HO-1 and Transcriptional Repressor ATF3 for Establishing Infection

Photo from wikipedia

We showed previously that antioxidant enzyme heme oxygenase 1 (HO-1) is critical for Leishmania survival in visceral leishmaniasis. HO-1 inhibits host oxidative burst and inflammatory cytokine production, leading to parasite… Click to show full abstract

We showed previously that antioxidant enzyme heme oxygenase 1 (HO-1) is critical for Leishmania survival in visceral leishmaniasis. HO-1 inhibits host oxidative burst and inflammatory cytokine production, leading to parasite persistence. ABSTRACT We showed previously that antioxidant enzyme heme oxygenase 1 (HO-1) is critical for Leishmania survival in visceral leishmaniasis. HO-1 inhibits host oxidative burst and inflammatory cytokine production, leading to parasite persistence. In the present study, screening of reported HO-1 transcription factors revealed that infection upregulated (4.1-fold compared to control [P < 0.001]) nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2). Silencing of NRF2 reduced both HO-1 expression and parasite survival. Investigation revealed that infection-induced transient reactive oxygen species (ROS) production dissociated NRF2 from its inhibitor KEAP1 and enabled phosphorylation-dependent nuclear translocation. Both NRF2 and HO-1 silencing in infection increased production of proinflammatory cytokines. But the level was greater in NRF2-silenced cells than in HO-1-silenced ones, suggesting the presence of other targets of NRF2. Another stress responsive transcription factor ATF3 is also induced (4.6-fold compared to control [P < 0.001]) by NRF2 during infection. Silencing of ATF3 reduced parasite survival (59.3% decrease compared to control [P < 0.001]) and increased proinflammatory cytokines. Infection-induced ATF3 recruited HDAC1 into the promoter sites of tumor necrosis factor alpha (TNF-α) and interleukin 12b (IL-12b) genes. Resulting deacetylated histones prevented NF-κB promoter binding, thereby reducing transcription of inflammatory cytokines. Administering the NRF2 inhibitor trigonelline hydrochloride to infected BALB/c mice resulted in reduced HO-1 and ATF3 expression, decreased spleen and liver parasite burdens, and increased proinflammatory cytokine levels. These results suggest that Leishmania upregulates NRF2 to activate both HO-1 and ATF3 for disease progression.

Keywords: infection; antioxidant enzyme; atf3; transcription; factor; factor nrf2

Journal Title: Infection and Immunity
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.