LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid and Robust Identification of the Agents of Black-Grain Mycetoma by Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

Photo from wikipedia

ABSTRACT Eumycetoma, a chronic fungal infection endemic in India, Indonesia, and parts of Africa and South and Central America, follows traumatic implantation of saprophytic fungi and frequently requires radical surgery… Click to show full abstract

ABSTRACT Eumycetoma, a chronic fungal infection endemic in India, Indonesia, and parts of Africa and South and Central America, follows traumatic implantation of saprophytic fungi and frequently requires radical surgery or amputation in the absence of appropriate treatment. Fungal species that can cause black-grain mycetomas include Madurella spp., Falciformispora spp., Trematosphaeria grisea, Nigrograna mackinnonii, Pseudochaetosphaeronema larense, Medicopsis romeroi, and Emarellia spp. Rhytidhysteron rufulum and Parathyridaria percutanea cause similar subcutaneous infections, but these infections lack the draining sinuses and fungal grains characteristic of eumycetoma. Accurate identification of the agents of subcutaneous fungal infection is essential to guide appropriate antifungal therapy. Since phenotypic identification of the causative fungi is often difficult, time-consuming molecular approaches are currently required. In the study described here we evaluated whether matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry might allow the accurate identification of eumycetoma agents and related fungi. A panel of 57 organisms corresponding to 10 different species from confirmed cases of eumycetoma and subcutaneous pedal masses, previously formally identified by PCR amplification and sequencing of internal transcribed spacer 1 (ITS1), was employed. Representative isolates of each species were used to create reference MALDI-TOF spectra, which were then used for the identification of the remaining isolates in a user-blinded manner. Here, we demonstrate that MALDI-TOF mass spectrometry accurately identified all of the test isolates, with 100%, 90.4%, and 67.3% of isolates achieving log scores greater than 1.8, 1.9, and 2.0, respectively.

Keywords: identification; black grain; time; mass spectrometry

Journal Title: Journal of Clinical Microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.