LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Clinical Performance of the Osmotic Shock-MALDI MS Method to Detect Klebsiella pneumoniae Carbapenemase in Clinical Isolates

Photo by dariusbashar from unsplash

The World Health Organization recently highlighted the serious worldwide problem of the emergence of antibiotic-resistant or antibiotic multidrug-resistant bacteria. Carbapenem-resistant Enterobacterales, including carbapenemase-producing Enterobacterales (CPE), are major antibiotic-resistant bacteria that… Click to show full abstract

The World Health Organization recently highlighted the serious worldwide problem of the emergence of antibiotic-resistant or antibiotic multidrug-resistant bacteria. Carbapenem-resistant Enterobacterales, including carbapenemase-producing Enterobacterales (CPE), are major antibiotic-resistant bacteria that can be identified by various methods, including antibiotic susceptibility testing, PCR, and immunologic assays. ABSTRACT The World Health Organization recently highlighted the serious worldwide problem of the emergence of antibiotic-resistant or antibiotic multidrug-resistant bacteria. Carbapenem-resistant Enterobacterales, including carbapenemase-producing Enterobacterales (CPE), are major antibiotic-resistant bacteria that can be identified by various methods, including antibiotic susceptibility testing, PCR, and immunologic assays. However, there is a need for a faster, more accurate, low-cost, and easy method to detect CPE strains. We previously developed an osmotic shock matrix-assisted laser desorption/ionization mass spectrometry (OS-MALDI MS) method for directly detecting intact Klebsiella pneumoniae carbapenemase (KPC) using osmotic shock cell lysis. In this study, we evaluated the OS-MALDI MS method and compared it with two other methods (octyl-glucoside-aided direct KPC detection method [OG-MALDI MS] and Bruker's MBT subtyping module indirect method [MBT-SM MALDI MS]). We first completed an analytical performance evaluation of the OS-MALDI MS method according to Clinical and Laboratory Standards Institute guidelines. Clinical testing was performed with 437 clinical isolates, including 292 KPC-producing bacteria and 145 non-KPC-producing bacteria. The OS-MALDI MS method exhibited 95.9% sensitivity, 100.0% specificity, and 100.0% precision for detecting KPC. Accuracy of the OS-MALDI MS, OG-MALDI MS, and MBT-SM MALDI MS methods was 97.3%, 55.9%, and 50.2%, respectively. In conclusion, the OS-MALDI MS method clearly outperformed the other methods, exhibiting the highest accuracy and sensitivity of the three methods. We propose the OS-MALDI MS method as a practical, useful method for clinic environments, which may help guide appropriate antibiotic treatment and contribute to the prevention of the spread of CPE.

Keywords: maldi method; osmotic shock; carbapenemase; method; maldi

Journal Title: Journal of Clinical Microbiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.