The E7 oncoprotein is a primary driver of HPV-mediated carcinogenesis. HPV E7 binds the putative tumor suppressor PTPN14 and targets it for degradation using the ubiquitin ligase UBR4. PTPN14 binds… Click to show full abstract
The E7 oncoprotein is a primary driver of HPV-mediated carcinogenesis. HPV E7 binds the putative tumor suppressor PTPN14 and targets it for degradation using the ubiquitin ligase UBR4. PTPN14 binds to a C-terminal arginine highly conserved in diverse HPV E7. Our previous efforts to understand how PTPN14 degradation contributes to the carcinogenic activity of high-risk HPV E7 used variants of E7 unable to bind to UBR4. Now, by directly manipulating E7 binding to PTPN14 and using a PTPN14 knockout rescue experiment, we demonstrate that the degradation of PTPN14 is required for high-risk HPV18 E7 to extend keratinocyte life span. Our data show that PTPN14 binding by HPV16 E7 and HPV18 E7 represses keratinocyte differentiation. HPV-positive cancers are frequently poorly differentiated, and the HPV life cycle depends upon keratinocyte differentiation. The finding that PTPN14 binding by HPV E7 impairs differentiation has significant implications for HPV-mediated carcinogenesis and the HPV life cycle. ABSTRACT The human papillomavirus (HPV) E7 oncoprotein is a primary driver of HPV-mediated carcinogenesis. The E7 proteins from diverse HPVs bind to the host cellular nonreceptor protein tyrosine phosphatase type 14 (PTPN14) and direct it for degradation through the activity of the E7-associated host E3 ubiquitin ligase UBR4. Here, we show that a highly conserved arginine residue in the C-terminal domain of diverse HPV E7 mediates the interaction with PTPN14. We found that disruption of PTPN14 binding through mutation of the C-terminal arginine did not impact the ability of several high-risk HPV E7 proteins to bind and degrade the retinoblastoma tumor suppressor or activate E2F target gene expression. HPVs infect human keratinocytes, and we previously reported that both PTPN14 degradation by HPV16 E7 and PTPN14 CRISPR knockout repress keratinocyte differentiation-related genes. Now, we have found that blocking PTPN14 binding through mutation of the conserved C-terminal arginine rendered both HPV16 and HPV18 E7 unable to repress differentiation-related gene expression. We then confirmed that the HPV18 E7 variant that could not bind PTPN14 was also impaired in repressing differentiation when expressed from the complete HPV18 genome. Finally, we found that the ability of HPV18 E7 to extend the life span of primary human keratinocytes required PTPN14 binding. CRISPR/Cas9 knockout of PTPN14 rescued keratinocyte life span extension in the presence of the PTPN14 binding-deficient HPV18 E7 variant. These results support the model that PTPN14 degradation by high-risk HPV E7 leads to repression of differentiation and contributes to its carcinogenic activity. IMPORTANCE The E7 oncoprotein is a primary driver of HPV-mediated carcinogenesis. HPV E7 binds the putative tumor suppressor PTPN14 and targets it for degradation using the ubiquitin ligase UBR4. PTPN14 binds to a C-terminal arginine highly conserved in diverse HPV E7. Our previous efforts to understand how PTPN14 degradation contributes to the carcinogenic activity of high-risk HPV E7 used variants of E7 unable to bind to UBR4. Now, by directly manipulating E7 binding to PTPN14 and using a PTPN14 knockout rescue experiment, we demonstrate that the degradation of PTPN14 is required for high-risk HPV18 E7 to extend keratinocyte life span. Our data show that PTPN14 binding by HPV16 E7 and HPV18 E7 represses keratinocyte differentiation. HPV-positive cancers are frequently poorly differentiated, and the HPV life cycle depends upon keratinocyte differentiation. The finding that PTPN14 binding by HPV E7 impairs differentiation has significant implications for HPV-mediated carcinogenesis and the HPV life cycle.
               
Click one of the above tabs to view related content.