LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interferon α/β Decoy Receptor Encoded by a Variant in the Dryvax Smallpox Vaccine Contributes to Virulence and Correlates with Severe Vaccine Side Effects

Photo from wikipedia

Attenuated live viruses make effective vaccines, although concerns exist due to infrequent complications, particularly in individuals with immunological defects. Such complications occurred with smallpox vaccines, which were shown to be… Click to show full abstract

Attenuated live viruses make effective vaccines, although concerns exist due to infrequent complications, particularly in individuals with immunological defects. Such complications occurred with smallpox vaccines, which were shown to be comprised of populations of variants. ABSTRACT Although providing long-lasting immunity, smallpox vaccination was associated with local and systemic reactions and rarely with severe complications, including progressive vaccinia and postvaccinia encephalitis. As the Dryvax smallpox vaccine consists of a population of variants, we investigated a particularly pathogenic isolate called clone 3 (CL3). Virus replication was monitored by inserting the gene encoding firefly luciferase (Luc) into the genomes of CL3 and ACAM2000, the second-generation smallpox vaccine derived from a less virulent clone. Greater luminescence occurred following intranasal or intraperitoneal inoculation of mice with CL3-Luc than ACAM2000-Luc. Previous genome sequencing of CL3 and ACAM2000 revealed numerous differences that could affect pathogenicity. We focused on a 4.2-kbp segment, containing several open reading frames, in CL3 that is absent from ACAM2000 and determined that lower virulence of the latter was associated with a truncation of the interferon α/β (IFN-α/β) decoy receptor. Truncation of the decoy receptor in CL3-Luc and repair of the truncated version in ACAM2000-Luc decreased and increased virulence, respectively. Blockade of the mouse type 1 IFN receptor increased the virulence of ACAM2000-Luc to that of CL3-Luc, consistent with the role of IFN in attenuating the former. The severities of disease following intracranial inoculation of immunocompetent mice and intraperitoneal inoculation of T cell-depleted mice were also greater in viruses expressing the full-length decoy receptor. Previous evidence for the low affinity of a similarly truncated decoy receptor for IFN and the presence of a full-length decoy receptor in virus isolated from a patient with progressive vaccinia support our findings. IMPORTANCE Attenuated live viruses make effective vaccines, although concerns exist due to infrequent complications, particularly in individuals with immunological defects. Such complications occurred with smallpox vaccines, which were shown to be comprised of populations of variants. Clone 3, isolated from Dryvax, the vaccine most widely used in the United States during the smallpox eradication campaign, was particularly pathogenic in animal models. We demonstrated that the full-length IFN-α/β decoy receptor in CL3 and a truncation of the receptor in the clone used for the second-generation smallpox vaccine ACAM2000 account for their difference in pathogenicity. Viruses expressing the full-length decoy receptor were more virulent following intranasal, intraperitoneal, or intracranial inoculation of mice than ACAM2000, and disease was exacerbated following T cell depletion. Correspondingly, the full-length decoy receptor is present in smallpox vaccines with high rates of side effects and in a Dryvax clone obtained from a lesion in a patient with progressive vaccinia.

Keywords: receptor; smallpox vaccine; decoy receptor

Journal Title: mBio
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.