Bacterial replication is dependent on the cytoskeletal protein FtsZ, which forms filaments that scaffold and recruit other essential division proteins. While the FtsZ monomer is well studied across organisms, many… Click to show full abstract
Bacterial replication is dependent on the cytoskeletal protein FtsZ, which forms filaments that scaffold and recruit other essential division proteins. While the FtsZ monomer is well studied across organisms, many questions remain about how the filaments form and function. ABSTRACT FtsZ filaments are the major structural component of the bacterial Z ring and are drivers of bacterial division. Crystal structures for FtsZ from some Gram-positive bacteria in the presence of GTP analogs suggest the possibility of a high-energy, “tense” conformation. It remains important to elucidate whether this tense form is the dominant form in filaments. Using dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) and differential isotopic labeling, we directly detected residues located at the intermonomer interface of GTP-bound wild-type (WT) Escherichia coli FtsZ filaments. We combined chemical shift prediction, homology modeling, and heteronuclear dipolar recoupling techniques to characterize the E. coli FtsZ filament interface and demonstrated that the monomers in active filaments assume a tense conformation. IMPORTANCE Bacterial replication is dependent on the cytoskeletal protein FtsZ, which forms filaments that scaffold and recruit other essential division proteins. While the FtsZ monomer is well studied across organisms, many questions remain about how the filaments form and function. Recently, a second monomer form was identified in Staphylococcus aureus that has far-reaching implications for FtsZ structure and function. However, to date, this form has not been directly observed outside S. aureus. In this study, we used solid-state NMR and dynamic nuclear polarization (DNP) to directly study the filaments of E. coli FtsZ to demonstrate that E. coli FtsZ filaments are primarily composed of this second, “tense” form of the monomer. This work is the first time GTP-bound, wild-type FtsZ filaments have been studied directly at atomic resolution and is an important step forward for the study of FtsZ filaments.
               
Click one of the above tabs to view related content.