LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antiviral Activity of Olanexidine-Containing Hand Rub against Human Noroviruses

Photo by i_am_nah from unsplash

Human noroviruses (HuNoVs) are highly contagious and cause nonbacterial acute gastroenteritis in all age groups worldwide. Since the introduction of rotavirus vaccines, HuNoVs have become the leading cause of diarrheal… Click to show full abstract

Human noroviruses (HuNoVs) are highly contagious and cause nonbacterial acute gastroenteritis in all age groups worldwide. Since the introduction of rotavirus vaccines, HuNoVs have become the leading cause of diarrheal illness in children. ABSTRACT Human norovirus (HuNoV) is the leading cause of epidemic and sporadic acute gastroenteritis worldwide. HuNoV transmission occurs predominantly by direct person-to-person contact, and its health burden is associated with poor hand hygiene and a lack of effective antiseptics and disinfectants. Specific therapies and methods to prevent and control HuNoV spread previously were difficult to evaluate because of the lack of a cell culture system to propagate infectious virus. This barrier has been overcome with the successful cultivation of HuNoV in nontransformed human intestinal enteroids (HIEs). Here, we report using the HIE cultivation system to evaluate the virucidal efficacy of an olanexidine gluconate-based hand rub (OLG-HR) and 70% ethanol (EtOH70%) against HuNoVs. OLG-HR exhibited fast-acting virucidal activity against a spectrum of HuNoVs including GII.4 Sydney[P31], GII.4 Den Haag[P4], GII.4 New Orleans[P4], GII.3[P21], GII.17[P13], and GI.1[P1] strains. Exposure of HuNoV to OLG-HR for 30 to 60 s resulted in complete loss of the ability of virus to bind to the cells and reduced in vitro binding to glycans in porcine gastric mucin. By contrast, the virucidal efficiency of EtOH70% on virus infectivity was strain specific. Dynamic light scattering (DLS) and electron microscopy of virus-like particles (VLPs) show that OLG-HR treatment causes partial disassembly and possibly conformational changes in VP1, interfering with histo-blood group antigen (HBGA) binding and infectivity, whereas EtOH70% treatment causes particle disassembly and clumping of the disassembled products, leading to loss of infectivity while retaining HBGA binding. The highly effective inactivation of HuNoV infectivity by OLG-HR suggests that this compound could reduce HuNoV transmission. IMPORTANCE Human noroviruses (HuNoVs) are highly contagious and cause nonbacterial acute gastroenteritis in all age groups worldwide. Since the introduction of rotavirus vaccines, HuNoVs have become the leading cause of diarrheal illness in children. These viruses are very stable in the environment and resistant to common disinfectants. This study evaluated the virucidal efficacy of a new disinfectant, olanexidine-based hand rub (OLG-HR), against HuNoV strains in an ex vivo human intestinal stem cell-derived enteroid (HIE) cultivation system. Exposure of multiple HuNoV strains to OLG-HR for 30 to 60 s resulted in complete loss of infectivity and binding to HBGAs, possibly due to partial disassembly and conformational changes in the major virus capsid (VP1). By comparison, the virucidal efficiency of EtOH70% was strain specific, leading to loss of infectivity while retaining HBGA binding. These findings show the utility of the ex vivo HIE cultivation system to test the effectiveness of disinfectants and report a highly effective product.

Keywords: hand; hunov; hand rub; cause; infectivity; human noroviruses

Journal Title: mBio
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.