LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Roles of the Nipah Virus Attachment Glycoprotein and Its Mobility in Early and Late Membrane Fusion Steps

Photo from wikipedia

The important Paramyxoviridae family includes measles, mumps, human parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). The deadly emerging NiV can cause neurologic and respiratory… Click to show full abstract

The important Paramyxoviridae family includes measles, mumps, human parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). The deadly emerging NiV can cause neurologic and respiratory symptoms in humans with a >60% mortality rate. ABSTRACT The Paramyxoviridae family comprises important pathogens that include measles (MeV), mumps, parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). Paramyxoviral entry into cells requires viral-cell membrane fusion, and formation of paramyxoviral pathognomonic syncytia requires cell-cell membrane fusion. Both events are coordinated by intricate interactions between the tetrameric attachment (G/H/HN) and trimeric fusion (F) glycoproteins. We report that receptor binding induces conformational changes in NiV G that expose its stalk domain, which triggers F through a cascade from prefusion to prehairpin intermediate (PHI) to postfusion conformations, executing membrane fusion. To decipher how the NiV G stalk may trigger F, we introduced cysteines along the G stalk to increase tetrameric strength and restrict stalk mobility. While most point mutants displayed near-wild-type levels of cell surface expression and receptor binding, most yielded increased NiV G oligomeric strength, and showed remarkably strong defects in syncytium formation. Furthermore, most of these mutants displayed stronger F/G interactions and significant defects in their ability to trigger F, indicating that NiV G stalk mobility is key to proper F triggering via moderate G/F interactions. Also remarkably, a mutant capable of triggering F and of fusion pore formation yielded little syncytium formation, implicating G or G/F interactions in a late step occurring post fusion pore formation, such as the extensive fusion pore expansion required for syncytium formation. This study uncovers novel mechanisms by which the G stalk and its oligomerization/mobility affect G/F interactions, the triggering of F, and a late fusion pore expansion step—exciting novel findings for paramyxoviral attachment glycoproteins. IMPORTANCE The important Paramyxoviridae family includes measles, mumps, human parainfluenza, and the emerging deadly zoonotic Nipah virus (NiV) and Hendra virus (HeV). The deadly emerging NiV can cause neurologic and respiratory symptoms in humans with a >60% mortality rate. NiV has two surface proteins, the receptor binding protein (G) and fusion (F) glycoproteins. They mediate the required membrane fusion during viral entry into host cells and during syncytium formation, a hallmark of paramyxoviral and NiV infections. We previously discovered that the G stalk domain is important for triggering F (via largely unknown mechanisms) to induce membrane fusion. Here, we uncovered new roles and mechanisms by which the G stalk and its mobility modulate the triggering of F and also unexpectedly affect a very late step in membrane fusion, namely fusion pore expansion. Importantly, these novel findings may extend to other paramyxoviruses, offering new potential targets for therapeutic interventions.

Keywords: fusion; membrane fusion; nipah virus; fusion pore; formation

Journal Title: mBio
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.