LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Balance of Neutrophil Extracellular Trap Formation and Nuclease Degradation: an Unknown Role of Bacterial Coinfections in COVID-19 Patients?

Photo by lamoune from unsplash

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading to public health crises worldwide. An understanding of the pathogenesis and the development of treatment strategies is of high interest. Recently,… Click to show full abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading to public health crises worldwide. An understanding of the pathogenesis and the development of treatment strategies is of high interest. Recently, neutrophil extracellular traps (NETs) have been identified as a potential driver of severe SARS-CoV-2 infections in humans. NETs are extracellular DNA fibers released by neutrophils after contact with various stimuli and accumulate antimicrobial substances or host defense peptides. ABSTRACT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading to public health crises worldwide. An understanding of the pathogenesis and the development of treatment strategies is of high interest. Recently, neutrophil extracellular traps (NETs) have been identified as a potential driver of severe SARS-CoV-2 infections in humans. NETs are extracellular DNA fibers released by neutrophils after contact with various stimuli and accumulate antimicrobial substances or host defense peptides. When massively released, NETs are described to contribute to immunothrombosis in acute respiratory distress syndrome and in vascular occlusions. Based on the increasing evidence that NETs contribute to severe COVID-19 cases, DNase treatment of COVID-19 patients to degrade NETs is widely discussed as a potential therapeutic strategy. Here, we discuss potential detrimental effects of NETs and their nuclease degradation, since NET fragments can boost certain bacterial coinfections and thereby increase the severity of the disease.

Keywords: nuclease degradation; neutrophil extracellular; covid patients; bacterial coinfections; sars cov

Journal Title: mBio
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.