LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies

Photo from wikipedia

β-Hemoglobinopathies are the most common monogenic disorders, and a century of research has provided us with a better understanding of the attributes of these diseases. Allogenic stem cell transplantation was… Click to show full abstract

β-Hemoglobinopathies are the most common monogenic disorders, and a century of research has provided us with a better understanding of the attributes of these diseases. Allogenic stem cell transplantation was the only potentially curative option available for these diseases until the discovery of gene therapy. The findings on the protective nature of fetal hemoglobin in sickle cell disease (SCD) and thalassemia patients carrying hereditary persistence of fetal hemoglobin (HPFH) mutations has given us the best evidence that the cure for β-hemoglobinopathies remains hidden in the hemoglobin locus. ABSTRACT β-Hemoglobinopathies are the most common monogenic disorders, and a century of research has provided us with a better understanding of the attributes of these diseases. Allogenic stem cell transplantation was the only potentially curative option available for these diseases until the discovery of gene therapy. The findings on the protective nature of fetal hemoglobin in sickle cell disease (SCD) and thalassemia patients carrying hereditary persistence of fetal hemoglobin (HPFH) mutations has given us the best evidence that the cure for β-hemoglobinopathies remains hidden in the hemoglobin locus. The detailed understanding of the developmental gene regulation of gamma-globin (γ-globin) and the emergence of gene manipulation strategies offer us the opportunity for developing a γ-globin gene-modified autologous stem cell transplantation therapy. In this review, we summarize different therapeutic strategies that reactivate fetal hemoglobin for the gene therapy of β-hemoglobinopathies.

Keywords: fetal hemoglobin; hemoglobin; gamma globin; gene; cell

Journal Title: Molecular and Cellular Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.