ABSTRACT To understand how ciliopathies such as polycystic kidney disease or Bardet-Biedl syndrome develop, we need to understand the basic molecular mechanisms underlying cilium development. Cilium growth depends on the… Click to show full abstract
ABSTRACT To understand how ciliopathies such as polycystic kidney disease or Bardet-Biedl syndrome develop, we need to understand the basic molecular mechanisms underlying cilium development. Cilium growth depends on the presence of functional intraflagellar transport (IFT) machinery, and we hypothesized that various kinases and phosphatases might be involved in this regulatory process. A candidate screen revealed two kinases, PKG-1 (a cGMP-dependent protein kinase) and GCK-2 (a mitogen-activated protein kinase kinase kinase kinase 3 [MAP4K3] kinase involved in mTOR signaling), significantly affecting dye filling, chemotaxis, cilium morphology, and IFT component distribution. PKG-1 and GCK-2 show similar expression patterns in Caenorhabditis elegans cilia and colocalize with investigated IFT machinery components. In pkg-1 mutants, a high level of accumulation of kinesin-2 OSM-3 in distal segments was observed in conjunction with an overall reduction of anterograde and retrograde IFT particle A transport, likely as a function of reduced tubulin acetylation. In contrast, in gck-2 mutants, both kinesin-2 motility and IFT particle A motility were significantly elevated in the middle segments, in conjunction with increased tubulin acetylation, possibly the cause of longer cilium growth. Observed effects in mutants can be also seen in manipulating upstream and downstream effectors of the respective cGMP and mTOR pathways. Importantly, transmission electron microscopy (TEM) analysis revealed no structural changes in cilia of pkg-1 and gck-2 mutants.
               
Click one of the above tabs to view related content.