LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Endogenous Plasmids and Chromosomal Genome Reduction in the Cardinium Endosymbiont of Dermatophagoides farinae

Photo by nci from unsplash

As bacterial endosymbionts, Cardinium typically undergoes genome reduction, but the molecular process is still unclear, such as how plasmids get involved in chromosome reduction. Here, we de novo assembled 2… Click to show full abstract

As bacterial endosymbionts, Cardinium typically undergoes genome reduction, but the molecular process is still unclear, such as how plasmids get involved in chromosome reduction. Here, we de novo assembled 2 genomes of Cardinium in astigmatic mites, especially the chromosome of Cardinium sp. ABSTRACT Cardinium bacteria are well known as endosymbionts that infect a wide range of arthropods and can manipulate host reproduction to promote their vertical transmission. As intracellular bacteria, Cardinium species undergo dramatic genome evolution, especially their chromosomal genome reduction. Although Cardinium plasmids have been reported to harbor important genes, the role of these plasmids in the genome evolution is yet to be fully understood. In this study, 2 genomes of Cardinium endosymbiont bacteria in astigmatic mites were de novo assembled, including the complete circular chromosomal genome of Cardinium sp. DF that was constructed in high quality using high-coverage long-read sequencing data. Intriguingly, 2 circular plasmids were assembled in Cardinium sp. DF and were identified to be endogenous for over 10 homologous genes shared with the chromosomal genome. Comparative genomics analysis illustrated an outline of the genome evolution of Cardinium bacteria, and the in-depth analysis of Cardinium sp. DF shed light on the multiple roles of endogenous plasmids in the molecular process of the chromosomal genome reduction. The endogenous plasmids of Cardinium sp. DF not only harbor massive homologous sequences that enable homologous recombination with the chromosome, but also can provide necessary functional proteins when the coding genes decayed in the chromosomal genome. IMPORTANCE As bacterial endosymbionts, Cardinium typically undergoes genome reduction, but the molecular process is still unclear, such as how plasmids get involved in chromosome reduction. Here, we de novo assembled 2 genomes of Cardinium in astigmatic mites, especially the chromosome of Cardinium sp. DF was assembled in a complete circular DNA using high-coverage long-read sequencing data. In the genome assembly of Cardinium sp. DF, 2 circular endogenous plasmids were identified to share at least 10 homologous genes with the chromosomal genome. In the comparative analysis, we identified a range of genes decayed in the chromosomal genome of Cardinium sp. DF but preserved in the 2 plasmids. Taken together with in-depth analyses, our results unveil that the endogenous plasmids harbor homologous sequences of chromosomal genome and can provide a structural basis of homologous recombination. Overall, this study reveals that endogenous plasmids participate in the ongoing chromosomal genome reduction of Cardinium sp. DF.

Keywords: cardinium; chromosomal genome; endogenous plasmids; cardinium endosymbiont; genome reduction

Journal Title: mSphere
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.