LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Alginate and Motility Regulator AmrZ is Essential for the Regulation of the Dispersion Response by Pseudomonas aeruginosa Biofilms

Photo from wikipedia

In P. aeruginosa, biofilm dispersion has been well-characterized with respect to dispersion cue perception, matrix degradation, and the consequences of dispersion. While the intracellular signaling molecule c-di-GMP has been linked… Click to show full abstract

In P. aeruginosa, biofilm dispersion has been well-characterized with respect to dispersion cue perception, matrix degradation, and the consequences of dispersion. While the intracellular signaling molecule c-di-GMP has been linked to many of the phenotypic changes ascribed to dispersion, including the modulation of motility and matrix production, little is known about the regulatory mechanisms leading to matrix degradation and cells actively leaving the biofilm. ABSTRACT Dispersion is an active process exhibited by Pseudomonas aeruginosa during the late stages of biofilm development or in response to various cues, including nitric oxide and glutamate. Upon cue sensing, biofilm cells employ enzymes that actively degrade the extracellular matrix, thereby allowing individual cells to become liberated. While the mechanism by which P. aeruginosa senses and relays dispersion cues has been characterized, little is known about how dispersion cue sensing mechanisms result in matrix degradation. Considering that the alginate and motility regulator AmrZ has been reported to regulate genes that play a role in dispersion, including those affecting virulence, c-di-GMP levels, Pel and Psl abundance, and motility, we asked whether AmrZ contributes to the regulation of dispersion. amrZ was found to be significantly increased in transcript abundance under dispersion-inducing conditions, with the inactivation of amrZ impairing dispersion by P. aeruginosa biofilms in response to glutamate and nitric oxide. While the overexpression of genes encoding matrix-degrading enzymes pelA, pslG, and/or endA resulted in the dispersion of wild-type biofilms, similar conditions failed to disperse biofilms formed by dtamrZ. Likewise, the inactivation of amrZ abrogated the hyperdispersive phenotype of PAO1/pJN-bdlA_G31A biofilms, with dtamrZ-impaired dispersion being independent of the expression, production, and activation of BdlA. Instead, dispersion was found to require the AmrZ-target genes napB and PA1891. Our findings indicate that AmrZ is essential for the regulation of dispersion by P. aeruginosa biofilms, functions downstream of BdlA postdispersion cue sensing, and regulates the expression of genes contributing to biofilm matrix degradation as well as napB and PA1891. IMPORTANCE In P. aeruginosa, biofilm dispersion has been well-characterized with respect to dispersion cue perception, matrix degradation, and the consequences of dispersion. While the intracellular signaling molecule c-di-GMP has been linked to many of the phenotypic changes ascribed to dispersion, including the modulation of motility and matrix production, little is known about the regulatory mechanisms leading to matrix degradation and cells actively leaving the biofilm. In this study, we report for the first time an essential role of the transcriptional regulator AmrZ and two AmrZ-dependent genes, napB, and PA1891, in the dispersion response, thereby linking dispersion cue sensing via BdlA to the regulation of matrix degradation and to the ultimate liberation of bacterial cells from the biofilm.

Keywords: matrix degradation; dispersion; cue; motility; aeruginosa

Journal Title: mSphere
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.