LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicted Functional and Structural Diversity of Receiver Domains in Fungal Two-Component Regulatory Systems

Photo from wikipedia

Fungal two-component regulatory systems incorporate receiver domains into hybrid histidine kinases (HHKs) and response regulators. We constructed a nonredundant database of 670 fungal receiver domain sequences from 51 species sampled… Click to show full abstract

Fungal two-component regulatory systems incorporate receiver domains into hybrid histidine kinases (HHKs) and response regulators. We constructed a nonredundant database of 670 fungal receiver domain sequences from 51 species sampled from nine fungal phyla. ABSTRACT Fungal two-component regulatory systems incorporate receiver domains into hybrid histidine kinases (HHKs) and response regulators. We constructed a nonredundant database of 670 fungal receiver domain sequences from 51 species sampled from nine fungal phyla. A much greater proportion (21%) of predicted fungal response regulators did not belong to known groups than previously appreciated. Receiver domains in Rim15 response regulators from Ascomycota and other phyla are very different from one another, as are the duplicate receiver domains in group XII HHKs. Fungal receiver domains from five known types of response regulators and 20 known types of HHKs exhibit distinct patterns of amino acids at conserved and variable positions known to be structurally and functionally important in bacterial receiver domains. We inferred structure/activity relationships from the patterns and propose multiple experimentally testable hypotheses about the mechanisms of signal transduction mediated by fungal receiver domains.

Keywords: regulatory systems; two component; fungal two; component regulatory; receiver; receiver domains

Journal Title: mSphere
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.