LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Peripheral Blood Microbiome Analysis via Noninvasive Prenatal Testing Reveals the Complexity of Circulating Microbial Cell-Free DNA

Photo by miguelherc96 from unsplash

While circulating cell-free DNA (cfDNA) has been becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a baseline for microbial cfDNA in healthy individuals is… Click to show full abstract

While circulating cell-free DNA (cfDNA) has been becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a baseline for microbial cfDNA in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Standard low-pass whole-genome-sequencing-based NIPT shares many similarities with the sequencing protocol for metagenomics and could provide a microbial cfDNA baseline in healthy people; thus, a reference cfDNA data set of the human microbiome was established with sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening. ABSTRACT While circulating cell-free DNA (cfDNA) is becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a microbial cfDNA baseline in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Because noninvasive prenatal testing (NIPT) shares many similarities with the sequencing protocol of metagenomics, we utilized the standard low-pass whole-genome-sequencing-based NIPT to establish a microbial cfDNA baseline in healthy people. Sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening were retrospectively collected and reanalyzed for microbiome DNA screening. It was found that more than 95% of exogenous cfDNA was from bacteria, 3% from eukaryotes, and 0.4% from viruses, indicating the gut/environment origins of many microorganisms. Overall and regional abundance patterns were well illustrated, with huge regional diversity and complexity, and unique interspecies and symbiotic relationships were observed for TORCH organisms (Toxoplasma gondii, others [Treponema pallidum {causing syphilis}, hepatitis B virus {HBV}, and human parvovirus B19 {HPV-B19}], rubella virus, cytomegalovirus [CMV], and herpes simplex virus [HSV]) and another common virus, Epstein-Barr virus (EBV). To sum up, our study revealed the complexity of the baseline circulating microbial cfDNA and showed that microbial cfDNA sequencing results need to be interpreted in a more comprehensive manner. IMPORTANCE While circulating cell-free DNA (cfDNA) has been becoming a powerful marker for noninvasive identification of infectious pathogens in liquid biopsy specimens, a baseline for microbial cfDNA in healthy individuals is urgently needed for the proper interpretation of microbial cfDNA sequencing results in clinical metagenomics. Standard low-pass whole-genome-sequencing-based NIPT shares many similarities with the sequencing protocol for metagenomics and could provide a microbial cfDNA baseline in healthy people; thus, a reference cfDNA data set of the human microbiome was established with sequencing data from a total of 107,763 peripheral blood samples of healthy pregnant women undergoing NIPT screening. Our study revealed the complexity of circulating microbial cfDNA and indicated that microbial cfDNA sequencing results need to be interpreted in a more comprehensive manner, especially with regard to geographic patterns and coexistence networks.

Keywords: cell free; cfdna; microbial cfdna; free dna; peripheral blood

Journal Title: Microbiology Spectrum
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.