LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

WhiB4 Is Required for the Reactivation of Persistent Infection of Mycobacterium marinum in Zebrafish

Photo from wikipedia

About one-quarter of the world’s population has latent TB infection, and 5 to 10% of those individuals will fall ill with TB. Our finding suggests that WhiB4 is an attractive… Click to show full abstract

About one-quarter of the world’s population has latent TB infection, and 5 to 10% of those individuals will fall ill with TB. Our finding suggests that WhiB4 is an attractive target for the development of novel therapeutics, which may help to prevent the reactivation of latent infection, thereby reducing the incidences of active TB. ABSTRACT Granulomas are the pathological hallmark of tuberculosis (TB). In individuals with latent TB infection, Mycobacterium tuberculosis cells reside within granulomas in a nonreplicating dormant state, and a portion of them will develop active TB. Little is known on the bacterial mechanisms/factors involved in this process. In this study, we found that WhiB4, an oxygen sensor and a transcription factor, plays a critical role in disease progression and reactivation of Mycobacterium marinum (M. marinum) infection in zebrafish. We show that the whiB4::Tn mutant of M. marinum caused persistent infection in adult zebrafish, which is characterized by the lower but stable bacterial loads, constant number of nonnecrotized granulomas in fewer organs, and reduced inflammation compared to those of zebrafish infected with the wild-type bacteria or the complemented strain. The mutant bacteria in zebrafish were also less responsive to antibiotic treatments. Moreover, the whiB4::Tn mutant was defective in resuscitation from hypoxia-induced dormancy and the DosR regulon was dysregulated in the mutant. Taken together, our results suggest that WhiB4 is a major driver of reactivation from persistent infection. IMPORTANCE About one-quarter of the world’s population has latent TB infection, and 5 to 10% of those individuals will fall ill with TB. Our finding suggests that WhiB4 is an attractive target for the development of novel therapeutics, which may help to prevent the reactivation of latent infection, thereby reducing the incidences of active TB.

Keywords: marinum; infection; reactivation; latent infection; mycobacterium; persistent infection

Journal Title: Microbiology Spectrum
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.