LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genomic Diversity of Methicillin-Resistant Staphylococcus aureus CC398 Isolates Collected from Diseased Swine in the German National Resistance Monitoring Program GERM-Vet from 2007 to 2019

Photo from wikipedia

The LA-MRSA-CC398 lineage is known for its low host specificity and frequent multiresistance to antimicrobial agents. Colonized swine and their related surroundings represent a considerable risk of LA-MRSA-CC398 colonization or… Click to show full abstract

The LA-MRSA-CC398 lineage is known for its low host specificity and frequent multiresistance to antimicrobial agents. Colonized swine and their related surroundings represent a considerable risk of LA-MRSA-CC398 colonization or infection for occupationally exposed people through which such isolates might be further disseminated within the human community. ABSTRACT Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) clonal complex 398 (CC398) isolates (n = 178) collected in the national resistance monitoring program GERM-Vet from diseased swine in Germany from 2007 to 2019 were investigated for their genomic diversity with a focus on virulence and antimicrobial resistance (AMR) traits. Whole-genome sequencing was followed by molecular typing and sequence analysis. A minimum spanning tree based on core-genome multilocus sequence typing was constructed, and antimicrobial susceptibility testing was performed. Most isolates were assigned to nine clusters. They displayed close phylogenetic relationships but a wide molecular variety, including 13 spa types and 19 known and four novel dru types. Several toxin-encoding genes, including eta, seb, sek, sep, and seq, were detected. The isolates harbored a wide range of AMR properties mirroring the proportions of the classes of antimicrobial agents applied in veterinary medicine in Germany. Multiple novel or rare AMR genes were identified, including the phenicol-lincosamide-oxazolidinone-pleuromutilin-streptogramin A resistance gene cfr, the lincosamide-pleuromutilin-streptogramin A resistance gene vga(C), and the novel macrolide-lincosamide-streptogramin B resistance gene erm(54). Many AMR genes were part of small transposons or plasmids. Clonal and geographical correlations of molecular characteristics and resistance and virulence genes were more frequently observed than temporal relations. In conclusion, this study provides insight into population dynamics of the main epidemic porcine LA-MRSA lineage in Germany over a 13-year-period. The observed comprehensive AMR and virulence properties, most likely resulting from the exchange of genetic material between bacteria, highlighted the importance of LA-MRSA surveillance to prevent further dissemination among swine husbandry facilities and entry into the human community. IMPORTANCE The LA-MRSA-CC398 lineage is known for its low host specificity and frequent multiresistance to antimicrobial agents. Colonized swine and their related surroundings represent a considerable risk of LA-MRSA-CC398 colonization or infection for occupationally exposed people through which such isolates might be further disseminated within the human community. This study provides insight into the diversity of the porcine LA-MRSA-CC398 lineage in Germany. Clonal and geographical correlations of molecular characteristics and resistance and virulence traits were detected and may be associated with the spread of specific isolates through livestock trade, human occupational exposure, or dust emission. The demonstrated genetic variability underlines the lineage’s ability to horizontally acquire foreign genetic material. Thus, LA-MRSA-CC398 isolates have the potential to become even more dangerous for various host species, including humans, due to increased virulence and/or limited therapeutic options for infection control. Full-scale LA-MRSA monitoring at the farm, community, and hospital level is therefore essential.

Keywords: cc398 isolates; cc398; resistance; monitoring; mrsa cc398

Journal Title: Microbiology Spectrum
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.