LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Metagenomic Next-Generation Sequencing (mNGS) Using Bronchoalveolar Lavage Fluid (BALF) in Diagnosing Pneumonia of Children

Photo by markstos from unsplash

Our study indicates high efficiency of mNGS using BALF for the detection of causative pathogens that cause pneumonia in children. mNGS can be a potential diagnostic tool to supplement conventional… Click to show full abstract

Our study indicates high efficiency of mNGS using BALF for the detection of causative pathogens that cause pneumonia in children. mNGS can be a potential diagnostic tool to supplement conventional methods for children’s pneumonia. ABSTRACT Pneumonia is the leading cause of death in children; the pathogens are often difficult to diagnose. In this study, the performance of metagenomic next-generation sequencing (mNGS) using bronchoalveolar lavage fluid (BALF) samples from 112 children with confirmed pneumonia has been evaluated. mNGS performed a significantly higher positive detection rate (91.07%, 95% confidence interval [CI] 83.80% to 95.40%) and coincidence rate against the final diagnosis (72.32%, 95% CI 62.93% to 80.15%) than that of conventional methods (70.54%, 95% CI 61.06% to 78.58% and 56.25%, 95% CI 46.57% to 65.50%, respectively) (P < 0.01 and P < 0.05, respectively). Bacteria, viruses, and their mixed infections were common in children with pneumonia. Streptococcus pneumoniae was the most common bacterial pathogen in children with pneumonia, while Haemophilus parainfluenzae and Haemophilus influenzae seemed more likely to cause nonsevere pneumonia in children. In contrast, human cytomegalovirus (CMV) infection and the simultaneous bacterial infections could cause severe pneumonia, especially in children with underlying diseases. After adjustments of antibiotics based on mNGS and conventional methods, the conditions improved in 109 (97.32%) children. mNGS of BALF samples has shown great advantages in diagnosing the pathogenic etiology of pneumonia in children, especially when considering the limited volumes of BALF and the previous use of empirical antibiotics, contributing to the timely adjustment of antibiotic treatments, which can potentially improve the prognosis and decrease the mortality. IMPORTANCE Our study indicates high efficiency of mNGS using BALF for the detection of causative pathogens that cause pneumonia in children. mNGS can be a potential diagnostic tool to supplement conventional methods for children’s pneumonia.

Keywords: conventional methods; balf; pneumonia children; mngs using; children pneumonia

Journal Title: Microbiology Spectrum
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.