Smokeless tobacco products (STPs) contain complex microbial communities that influence the synthesis of carcinogens, such as tobacco-specific nitrosamines (TSNAs). Research on STP-associated bacterial populations revealed connections between bacterial metabolism and… Click to show full abstract
Smokeless tobacco products (STPs) contain complex microbial communities that influence the synthesis of carcinogens, such as tobacco-specific nitrosamines (TSNAs). Research on STP-associated bacterial populations revealed connections between bacterial metabolism and TSNA synthesis. ABSTRACT The microbial communities present in smokeless tobacco products (STPs) perform critical steps in the synthesis of carcinogens, mainly tobacco-specific nitrosamines (TSNAs). Most studies emphasize the bacterial component, and the mycobiome of STPs has not been well characterized. In this study, we investigated the fungal communities in the different categories of STPs by sequencing the internal transcribed spacer (ITS) rRNA region of the fungal genome. The ecological character of the fungal community associated with STPs was determined by using FUNGuild. Our results indicated that Ascomycota and Basidiomycota were the most abundant fungal phyla across all STPs. The predominant fungal genera in STPs were Pichia, Sterigmatomyces, and Mortierella. The α-diversity varied significantly across the STPs based on observed, Fisher, and Shannon indices. Using SparCC cooccurrence network analysis, significant positive correlations of 58.5% and negative connections of 41.5% were obtained among fungal genera identified in STPs. Furthermore, the functional predictions by FUNGuild determined that STPs possessed high abundances of saprotroph and pathotroph-saprotroph-symbiotroph fungal trophic groups. At the functional guild level, the qiwam samples contained high abundances of soil saprotrophs, while plant pathogens were prevalent in pan-masala samples. These results suggest that various fungal populations reside in STPs and interrelate with each other and can contribute to the synthesis of TSNAs. This study has established the basis for future large-scale investigations of STP-associated mycobiota and the impact of such mycobiota in oral carcinogenesis in STP users via inflammation and carcinogens (TSNAs and mycotoxins). IMPORTANCE Smokeless tobacco products (STPs) contain complex microbial communities that influence the synthesis of carcinogens, such as tobacco-specific nitrosamines (TSNAs). Research on STP-associated bacterial populations revealed connections between bacterial metabolism and TSNA synthesis. The abundance of the fungal population may also have an impact on the production of TSNAs. This study examined STPs popularly used in India, and diverse fungal communities were identified in these STPs. Pichia, Sterigmatomyces, and Mortierella were the predominant fungal genera in the STPs. High abundances of saprotroph and pathotroph-saprotroph-symbiotroph trophic groups in STPs could affect the degradation of tobacco products and the synthesis of TSNAs.
               
Click one of the above tabs to view related content.