LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Use of Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Complex Drug Resistance from Early Positive Liquid Cultures

Photo by _louisreed from unsplash

In this study, we used whole-genome sequencing (WGS) from early positive liquid (MGIT) cultures instead of solid cultures to predict drug resistance of 182 Mycobacterium tuberculosis complex (MTBC) clinical isolates… Click to show full abstract

In this study, we used whole-genome sequencing (WGS) from early positive liquid (MGIT) cultures instead of solid cultures to predict drug resistance of 182 Mycobacterium tuberculosis complex (MTBC) clinical isolates to predict drug resistance using the TB-Profiler informatics platform. Our study indicates that WGS may be a promising method for predicting MTBC resistance using early positive liquid cultures. ABSTRACT Our objective was to evaluate the performance of whole-genome sequencing (WGS) from early positive liquid cultures for predicting Mycobacterium tuberculosis complex (MTBC) drug resistance. Clinical isolates were obtained from tuberculosis patients at Shanghai Pulmonary Hospital (SPH). Antimicrobial susceptibility testing (AST) was performed, and WGS from early Bactec mycobacterial growth indicator tube (MGIT) 960-positive liquid cultures was performed to predict the drug resistance using the TB-Profiler informatics platform. A total of 182 clinical isolates were enrolled in this study. Using phenotypic AST as the gold standard, the overall sensitivity and specificity for WGS were, respectively, 97.1% (89.8 to 99.6%) and 90.4% (83.4 to 95.1%) for rifampin, 91.0% (82.4 to 96.3%) and 95.2% (89.1 to 98.4%) for isoniazid, 100.0% (89.4 to 100.0%) and 87.3% (80.8 to 92.1%) for ethambutol, 96.6% (88.3 to 99.6%) and 61.8% (52.6 to 70.4%) for streptomycin, 86.8% (71.9 to 95.6%) and 95.8% (91.2 to 98.5%) for moxifloxacin, 86.5% (71.2 to 91.5%) and 95.2% (90.3 to 98.0%) for ofloxacin, 100.0% (54.1 to 100.0%) and 67.6% (60.2 to 74.5%) for amikacin, 100.0% (63.1 to 100.0%) and 67.2% (59.7 to 74.2%) for kanamycin, 62.5% (24.5 to 91.5%) and 88.5% (82.8 to 92.8%) for ethionamide, 33.3% (4.3 to 77.7%) and 98.3% (95.1 to 99.7%) for para-aminosalicylic acid, and 0.0% (0.0 to 12.3%) and 100.0% (97.6 to 100.0%) for cycloserine. The concordances of WGS-based AST and phenotypic AST were as follows: rifampin (92.9%), isoniazid (93.4%), ethambutol (89.6%), streptomycin (73.1%), moxifloxacin (94.0%), ofloxacin (93.4%), amikacin (68.7%), kanamycin (68.7%), ethionamide (87.4%), para-aminosalicylic acid (96.2%) and cycloserine (84.6%). We conclude that WGS could be a promising approach to predict MTBC resistance from early positive liquid cultures. IMPORTANCE In this study, we used whole-genome sequencing (WGS) from early positive liquid (MGIT) cultures instead of solid cultures to predict drug resistance of 182 Mycobacterium tuberculosis complex (MTBC) clinical isolates to predict drug resistance using the TB-Profiler informatics platform. Our study indicates that WGS may be a promising method for predicting MTBC resistance using early positive liquid cultures.

Keywords: early positive; resistance; positive liquid; drug resistance

Journal Title: Microbiology Spectrum
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.