LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimated Impact of Low Isolate Numbers on the Reliability of Cumulative Antibiogram Data

Photo by ryanjohns from unsplash

Antibiograms are reports of local antimicrobial susceptibility patterns for common bacteria and yeast that are used to make empirical decisions for patient therapy and also to inform institution therapy guidelines.… Click to show full abstract

Antibiograms are reports of local antimicrobial susceptibility patterns for common bacteria and yeast that are used to make empirical decisions for patient therapy and also to inform institution therapy guidelines. This study evaluates the impact of low isolate counts on the reliability of antibiograms, and suggests that more institutions should utilize multiple years of data to overcome this issue. ABSTRACT Antibiograms are cumulative reports of antimicrobial susceptibility results that are used to guide the selection of empirical antibiotic therapy. Although Clinical and Laboratory Standards Institute (CLSI) guidelines recommend including only organisms that have at least 30 isolates in an antibiogram, previous studies demonstrated that adherence to this recommendation is highly variable. This paper aims to model the impact of small sample sizes on expected levels of error in cumulative antibiograms by comparing percent susceptibility results for random samples to those of the larger, entire data set. The results demonstrate relatively high error rates when utilizing low numbers of isolates in cumulative antibiograms, and provide a discussion point for considering the appropriate number of isolates that could be utilized, and the impact of increasing isolate numbers by including multiple years of data. IMPORTANCE Antibiograms are reports of local antimicrobial susceptibility patterns for common bacteria and yeast that are used to make empirical decisions for patient therapy and also to inform institution therapy guidelines. This study evaluates the impact of low isolate counts on the reliability of antibiograms, and suggests that more institutions should utilize multiple years of data to overcome this issue.

Keywords: impact low; low isolate; isolate numbers; therapy

Journal Title: Microbiology Spectrum
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.