LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of Immunocompetent Mouse Models for Borrelia miyamotoi Infection

Photo from wikipedia

Borrelia miyamotoi is a causative agent of hard tick relapsing fever, was first identified in the early 1990s, and was characterized as a human pathogen in 2011. Unlike other relapsing… Click to show full abstract

Borrelia miyamotoi is a causative agent of hard tick relapsing fever, was first identified in the early 1990s, and was characterized as a human pathogen in 2011. Unlike other relapsing fever Borrelia species, B. miyamotoi spread by means of Ixodes ticks. ABSTRACT Borrelia miyamotoi is a relapsing fever spirochete that is harbored by Ixodes spp. ticks and is virtually uncharacterized, compared to other relapsing fever Borrelia vectored by Ornithodoros spp. ticks. There is not an immunocompetent mouse model for studying B. miyamotoi infection in vivo or for transmission in the vector-host cycle. Our goal was to evaluate B. miyamotoi infections in multiple mouse breeds/strains as a prelude to the ascertainment of the best experimental infection model. Two B. miyamotoi strains, namely, LB-2001 and CT13-2396, as well as three mouse models, namely, CD-1, C3H/HeJ, and BALB/c, were evaluated. We were unable to observe B. miyamotoi LB-2001 spirochetes in the blood via darkfield microscopy or to detect DNA via real-time PCR post needle inoculation in the CD-1 and C3H/HeJ mice. However, LB-2001 DNA was detected via real-time PCR in the blood of the BALB/c mice after needle inoculation, although spirochetes were not observed via microscopy. CD-1, C3H/HeJ, and BALB/c mice generated an antibody response to B. miyamotoi LB-2001 following needle inoculation, but established infections were not detected, and the I. scapularis larvae failed to acquire spirochetes from the exposed CD-1 mice. In contrast, B. miyamotoi CT13-2396 was visualized in the blood of the CD-1 and C3H/HeJ mice via darkfield microscopy and detected by real-time PCR post needle inoculation. Both mouse strains seroconverted. However, no established infection was detected in the mouse organs, and the I. scapularis larvae failed to acquire Borrelia after feeding on CT13-2396 exposed CD-1 or C3H/HeJ mice. These findings underscore the challenges in establishing an experimental B. miyamotoi infection model in immunocompetent laboratory mice. IMPORTANCE Borrelia miyamotoi is a causative agent of hard tick relapsing fever, was first identified in the early 1990s, and was characterized as a human pathogen in 2011. Unlike other relapsing fever Borrelia species, B. miyamotoi spread by means of Ixodes ticks. The relatively recent recognition of this human pathogen means that B. miyamotoi is virtually uncharacterized, compared to other Borrelia species. Currently there is no standard mouse-tick model with which to study the interactions of the pathogen within its vector and hosts. We evaluated two B. miyamotoi isolates and three immunocompetent mouse models to identify an appropriate model with which to study tick-host-pathogen interactions. With the increased prevalence of human exposure to Ixodes ticks, having an appropriate model with which to study B. miyamotoi will be critical for the future development of diagnostics and intervention strategies.

Keywords: miyamotoi; infection; borrelia miyamotoi; microscopy; mouse; relapsing fever

Journal Title: Microbiology Spectrum
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.