Natural transformation is an important mechanism for bacteria to acquire exogenous DNA molecules during the process of evolution. Additionally, it can also be used as a method to introduce foreign… Click to show full abstract
Natural transformation is an important mechanism for bacteria to acquire exogenous DNA molecules during the process of evolution. Additionally, it can also be used as a method to introduce foreign genes into bacteria under laboratory conditions. ABSTRACT Avibacterium paragallinarum is the pathogen involved in infectious coryza (IC), an acute infectious upper respiratory disease in chickens. The prevalence of IC has increased in China in recent years. There is a lack of reliable and effective procedures for gene manipulation, which has limited the research on the bacterial genetics and pathogenesis of A. paragallinarum. Natural transformation has been developed as a method of gene manipulation in Pasteurellaceae by the introduction of foreign genes or DNA fragments into bacterial cells, but there has been no report on natural transformation in A. paragallinarum. In this study, we analyzed the existence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum and established a method for transformation in it. Through bioinformatics analysis, we identified 16 homologs of Haemophilus influenzae competence proteins in A. paragallinarum. We found that the uptake signal sequence (USS) was overrepresented in the genome of A. paragallinarum (1,537 to 1,641 copies of the core sequence ACCGCACTT). We then constructed a plasmid, pEA-KU, that carries the USS and a plasmid, pEA-K, without the USS. These plasmids can be transferred via natural transformation into naturally competent strains of A. paragallinarum. Significantly, the plasmid that carries USS showed a higher transformation efficiency. In summary, our results demonstrate that A. paragallinarum has the ability to undergo natural transformation. These findings should prove to be a valuable tool for gene manipulation in A. paragallinarum. IMPORTANCE Natural transformation is an important mechanism for bacteria to acquire exogenous DNA molecules during the process of evolution. Additionally, it can also be used as a method to introduce foreign genes into bacteria under laboratory conditions. Natural transformation does not require equipment such as an electroporation apparatus. It is easy to perform and is similar to gene transfer under natural conditions. However, there have been no reports on natural transformation in Avibacterium paragallinarum. In this study, we analyzed the presence of homologous genetic factors and competence proteins underlying natural transformation in A. paragallinarum. Our results indicate that natural competence could be induced in A. paragallinarum serovars A, B, and C. Furthermore, the method that we established to transform plasmids into naturally competent A. paragallinarum strains was stable and efficient.
               
Click one of the above tabs to view related content.