LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-precision time-space correlation through coupled apatite and zircon tephrochronology: An example from the Permian-Triassic boundary in South China

Photo from wikipedia

Accurate and precise dating of individual volcanogenic beds that spread across multiple sedimentary successions is a powerful tool to untangle stratigraphic age contradictions, since these horizons are deposited synchronously. In… Click to show full abstract

Accurate and precise dating of individual volcanogenic beds that spread across multiple sedimentary successions is a powerful tool to untangle stratigraphic age contradictions, since these horizons are deposited synchronously. In this study, we show that combining apatite chemistry with zircon age, Th/U ratio, and Hf isotope composition leads to reliable lateral correlation of volcanic horizons across sections representing disparate biological, chemical, and physical paleoenvironments. We correlate two volcanogenic horizons across six sedimentary sections straddling the Permian-Triassic boundary (PTB) in the Nanpanjiang Basin (South China), including the last Permian bed below the unconformity in shallow-water sections of the Luolou Platform. We place the PTB in our sections at the marked lithological change in order to avoid the difficulties that arise from the diachronism of the index conodont Hindeodus parvus, the first occurrence of which defines the PTB at the Global Stratotype Section and Point at Meishan. Our new data demonstrate that these volcanogenic beds are contemporaneous and cogenetic, allowing us to pool high-precision U-Pb zircon ages from the same horizon across several sections, and dating the last Permian volcanic event in this basin at 252.048 ± 0.033 Ma. We show that the mineral chemistry of apatite and zircon of intra- and interbasin-wide volcanogenic beds provides tie points against which biozones, carbon isotopes, astronomic cycles, and geomagnetic polarity time series can be stringently tested.

Keywords: permian triassic; zircon; south china; high precision; chemistry; triassic boundary

Journal Title: Geology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.