LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Global-ocean redox variation during the middle-late Permian through Early Triassic based on uranium isotope and Th/U trends of marine carbonates

Photo from wikipedia

Uranium isotopes (238U/235U) in carbonates, a proxy for global-ocean redox conditions owing to their redox sensitivity and long residence time in seawater, exhibit substantial variability in the Daxiakou section of… Click to show full abstract

Uranium isotopes (238U/235U) in carbonates, a proxy for global-ocean redox conditions owing to their redox sensitivity and long residence time in seawater, exhibit substantial variability in the Daxiakou section of south China from the upper-middle Permian through the mid-lower Triassic (∼9 m.y.). Middle and late Permian ocean redox conditions were similar to that of the modern ocean and were characterized by improving oxygenation in the ∼2 m.y. prior to the latest Permian mass extinction (LPME), countering earlier interpretations of sustained or gradually expanding anoxia during this interval. The LPME coincided with an abrupt negative shift of >0.5‰ in δ238U that signifies a rapid expansion of oceanic anoxia. Intensely anoxic conditions persisted for at least ∼700 k.y. (Griesbachian), lessening somewhat during the Dienerian. Th/U concentration ratios vary inversely with δ238U during the Early Triassic, with higher ratios reflecting reduced U concentrations in global seawater as a consequence of large-scale removal to anoxic facies. Modeling suggests that 70%–100% of marine U was removed to anoxic sinks during the Early Triassic, resulting in seawater U concentrations of <5% that of the modern ocean. Rapid intensification of anoxia concurrent with the LPME implies that ocean redox changes played an important role in the largest mass extinction event in Earth history.

Keywords: late permian; early triassic; global ocean; middle late; ocean redox

Journal Title: Geology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.