Fractures within the earth control rock strength and fluid flow, but their dynamic nature is not well understood. As part of a series of underground chemical explosions in granite in… Click to show full abstract
Fractures within the earth control rock strength and fluid flow, but their dynamic nature is not well understood. As part of a series of underground chemical explosions in granite in Nevada, we collected and analyzed microfracture density data sets prior to, and following, individual explosions. Our work shows an ∼4-fold increase in both open and filled microfractures following the explosions. Based on the timing of core retrieval, filling of some new fractures occurs in as little as 6 wk after fracture opening under shallow (<100 m) crustal conditions. These results suggest that near-surface fractures may fill quite rapidly, potentially changing permeability on time scales relevant to oil, gas, and geothermal energy production; carbon sequestration; seismic cycles; and radionuclide migration from nuclear waste storage and underground nuclear explosions.
               
Click one of the above tabs to view related content.