LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrated geophysical characterization of crustal domains in the eastern Black Sea

Photo from wikipedia

Rifting may lead ultimately to continental breakup, but the identification and characterization of the resulting crustal distribution remains challenging. Also, spatial and temporal changes in breakup magmatism may affect the… Click to show full abstract

Rifting may lead ultimately to continental breakup, but the identification and characterization of the resulting crustal distribution remains challenging. Also, spatial and temporal changes in breakup magmatism may affect the geophysical character of the newly formed oceanic crust, resulting in contrasting interpretations of crustal composition and distribution. In the Eastern Black Sea Basin (EBSB), the evolution from rifting to breakup has been long debated, with several interpretations for the distribution of stretched continental and oceanic crust. We interpret basement morphological variations from long-offset seismic reflection profiles, highlighting a northwest-to-southeast transition from faulted and tilted continental blocks to a rough and then smoother basement. We model magnetic anomalies to further constrain the various basement domains, and infer the presence of a weakly magnetized, stretched continental crust in the northwest, and a 0.4–3.8 A/m layer coinciding with the smooth basement in the central and southeastern area. We conclude that the EBSB oceanic crust extends farther to the northwest than was suggested previously from an abrupt change in crustal thickness and lower-crustal velocity. The apparent discrepancy between these different types of geophysical evidence may result from changes in magma supply during breakup, affecting the thickness and velocity structure of the resulting oceanic crust.

Keywords: crust; eastern black; oceanic crust; black sea; characterization

Journal Title: Geology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.