LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Subduction erosion and crustal material recycling indicated by adakites in central Tibet

Photo from wikipedia

Subduction erosion is important for crustal material recycling and is widespread in modern active convergent margins. However, such a process is rarely identified in fossil convergent systems, which casts doubt… Click to show full abstract

Subduction erosion is important for crustal material recycling and is widespread in modern active convergent margins. However, such a process is rarely identified in fossil convergent systems, which casts doubt on the importance of subduction erosion through the geological record. We report on ca. 155 Ma Kangqiong (pluton) intrusive rocks of a Mesozoic magmatic arc in the southern Qiangtang terrane, central Tibet. These rocks mainly consist of trondhjemites and tonalites and are similar to slab-derived adakites with mantle-like zircon oxygen isotope compositions (δ18O = 5.2‰–5.6‰), they display more evolved Sr-Nd isotopes and higher Th/La relative to mid-oceanic ridge basalts from the Bangong-Nujiang suture, and they contain abundant amphibole and biotite. These characteristics indicate magma generation via H2O-fluxed melting of eroded forearc crust debris with subducted oceanic crust at 1.5–2.5 GPa and 700–800 °C. In addition, the intrusions are exposed <20 km north of the Bangong-Nujiang suture. Given the formation of adakites, narrow arc-suture distance, migration of the Jurassic frontal arc toward the continent interior, and other independent geological archives, we suggest that the hydrated forearc crust materials were removed from the overlying plate and carried into the mantle by subduction erosion. Our study provides the first direct magmatic evidence for a subduction erosion process in pre-Cenozoic convergent systems, which confirms an important role for such processes in subduction-zone material recycling.

Keywords: material recycling; crustal material; subduction; subduction erosion

Journal Title: Geology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.