Most of the world’s Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines… Click to show full abstract
Most of the world’s Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba–bearing brines with H2S and SO42– produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200 °C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150 °C and 250 °C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.
               
Click one of the above tabs to view related content.