LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lithospheric structure and the isostatic state of Eastern Anatolia: Insight from gravity data modelling

Photo by michael75 from unsplash

Eastern Anatolia, Turkey, is a part of the Alpine-Himalayan collisional belt where continental crust is relatively thin for a collisional belt. The region contains part of the Zagros suture zone,… Click to show full abstract

Eastern Anatolia, Turkey, is a part of the Alpine-Himalayan collisional belt where continental crust is relatively thin for a collisional belt. The region contains part of the Zagros suture zone, which formed during collision of the Arabian and Anatolian plates in the Miocene. It is underlain by a low-velocity zone associated with asthenospheric flow in the uppermost mantle. We constructed gravity models of the crust and upper-mantle structures to assess the driving mechanism of asthenospheric flow and the isostatic state of Eastern Anatolia. Our density models are based on terrestrial and satellite-derived gravity data, and they are constrained by receiver function and seismic tomography. The gravity models show significant lithospheric thickness variations across the Anatolian and Arabian plates. The lithospheric mantle in Eastern Anatolia is thinner (~62–74 km) than the Arabian plate (~84–95 km), indicating that part of the Anatolian mantle lithosphere might have been removed by delamination. The lithospheric removal process might have occurred following the detachment of the Arabian slab in the Miocene. Widespread Holocene volcanism and high heat flow in Eastern Anatolia can be considered as evidence of lithospheric delamination and slab break-off. The upward asthenospheric flow and subsequent asthenospheric underplating beneath Eastern Anatolia might have been induced by both delamination and slab break-off. These two processes may account for the rapid uplift of the Anatolian Plateau. There is a residual topography of ~1.7 km that cannot be explained by crustal roots. Based on our gravity models, we suggest that part of the eastern Anatolian Plateau is dynamically supported by asthenospheric flow in the upper mantle. LITHOSPHERE; v. 10; no. 2; p. 279–290; GSA Data Repository Item 2018111 | Published online 22 February 2018 https://doi.org/10.1130/L685.1

Keywords: eastern anatolia; isostatic state; state eastern; asthenospheric flow; gravity

Journal Title: Lithosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.