LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deformation and extensional exhumation of 1.9 Ga high-pressure granulites along the Wholdaia Lake shear zone, south Rae craton, Northwest Territories, Canada

Photo by alinrusu92 from unsplash

The origin of high-pressure granulites in the south Rae craton and Snowbird tectonic zone (STZ) is highly enigmatic. Current models for their formation and exhumation envisage continental collision at 2.55… Click to show full abstract

The origin of high-pressure granulites in the south Rae craton and Snowbird tectonic zone (STZ) is highly enigmatic. Current models for their formation and exhumation envisage continental collision at 2.55 Ga and intracratonic orogenesis at 1.9 Ga, or collision and exhumation at ca. 1.9 Ga. As an attempt to reconcile these disparate models, we conducted a regional and detailed mapping program along a geophysical discontinuity 100 km west of the STZ within the south Rae craton of the Northwest Territories, Canada. This work presents the discovery of a new crustal-scale shear zone, the Wholdaia Lake shear zone (WLsz), which deformed and transposed host rocks into a 20-km-wide and 300-km-long ductile high-strain zone. U-Pb zircon geochronology was utilized to establish host-rock crystallization ages, timing of deposition of metasedimentary rocks, and age constraints of metamorphism and ductile shearing. Hanging-wall metasedimentary rocks have a new depositional range of 1.98–1.93 Ga and contain abundant metamorphic zircon at 1.91 Ga. The protoliths of the footwall mafic granulite orthogneisses crystallized at 2.6 Ga and were metamorphosed at 1.9 Ga, which extends the known footprint of 1.9 Ga metamorphism 100 km west of the STZ. During and after 1.9 Ga metamorphism, the WLsz began progressively exhuming footwall rocks in three distinct stages, associated with (1) normal-oblique shearing at high-pressure granulite-facies conditions, (2) normal-oblique shearing accompanied by mylonitization at amphibolite-facies conditions, and (3) normal-oblique shearing with ultramylonite development at amphiboliteto greenschist-facies conditions. Ductile shearing was waning by 1.86 Ga, based on ages obtained from late synto postkinematic crosscutting dikes. Collectively, the WLsz in concert with other regional structures aided both extensional and thrust-sense exhumation of a large high-grade terrane at 1.9 Ga in the south Rae craton. LITHOSPHERE; v. 10; no. 5; p. 641–661; GSA Data Repository Item 2018268 | Published online 31 August 2018 https:// doi .org /10 .1130 /L704 .1

Keywords: south rae; shear zone; exhumation; high pressure; rae craton

Journal Title: Lithosphere
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.