Cosmogenic burial dating enables dating of coarse-grained, Pliocene–Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in… Click to show full abstract
Cosmogenic burial dating enables dating of coarse-grained, Pliocene–Pleistocene sedimentary units that are typically difficult to date with traditional methods, such as magnetostratigraphy. In the actively deforming western Tarim Basin in NW China, Pliocene–Pleistocene conglomerates were dated at eight sites, integrating 26Al/10Be burial dating with previously published magnetostratigraphic sections. These samples were collected from growth strata on the flanks of growing folds and from sedimentary units beneath active faults to place timing constraints on the initiation of deformation of structures within the basin and on shortening rates on active faults. These new basin-fill and growthstrata ages document the late Neogene and Quaternary growth of the Pamir and Tian Shan orogens between >5 and 1 Ma and delineate the eastward propagation of deformation at rates up to 115 km/m.y. and basinward growth of both mountain belts at rates up to 12 km/m.y. LITHOSPHERE; v. 10; no. 6; p. 806–828; GSA Data Repository Item 2018311 | Published online 22 October 2018 https://doi.org/10.1130/L727.1
               
Click one of the above tabs to view related content.