LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Femtosecond Laser Technology for Solid-State Material Processing: Creation of Functional Surfaces and Selective Modification of Nanoscale Layers

Photo from wikipedia

Information on the rapidly increasing use of modification of solid-state materials surfaces by femtosecond laser pulses at moderate intensities (around 0.1–10 TW/cm2) is presented as applied to creation of functional… Click to show full abstract

Information on the rapidly increasing use of modification of solid-state materials surfaces by femtosecond laser pulses at moderate intensities (around 0.1–10 TW/cm2) is presented as applied to creation of functional surfaces with tailored thermophysical, hydrodynamic, and mechanical properties and in application to selective modification and removal of nanoscale (1–100 nm) layers of bulk and thin-film multilayer materials. The problems in obtaining functional surfaces with the externally controllable wetting behavior of superhydrophobic surfaces showing a self-cleaning effect and superhydrophilic surfaces with a controlled Leidenfrost temperature, critical heat flux, and heat transfer coefficient are considered for heat-transfer enhancement during the evaporation and boiling of the working fluid. Data on the hardening of the surface layer of structural materials and the synthesis of diamond-like films are given. The methods for the precision selective removal of nanoscale films and surface modification with the formation of subnanoscale structures are considered.

Keywords: solid state; functional surfaces; femtosecond laser; selective modification; creation functional; modification

Journal Title: High Temperature
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.