LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum deviation of an atom at coherent scattering

Photo from wikipedia

Effects of quantum deviation of a two-level atom at coherent scattering on an inhomogeneous optical potential created by crossed electromagnetic fields are considered. The region of interaction is formed by… Click to show full abstract

Effects of quantum deviation of a two-level atom at coherent scattering on an inhomogeneous optical potential created by crossed electromagnetic fields are considered. The region of interaction is formed by a lowfrequency quantized standing wave from a micromaser and a coherent traveling optical wave generated by an optical fiber located inside a cavity. The atom interacts with both fields under the conditions of two-photon two-wave resonance. It is shown that two effects of quantum deviation of translational motion of the atom can be observed. Interaction with the standing wave is caused under these conditions by a harmonic potential the character of scattering of the atom on which depends significantly on the initial conditions of preparation of the atom and quantized mode. The other effect—deviation of the atom by the classical traveling wave—is also completely quantum mechanical under these conditions and is produced by the noncommutative contribution of the kinetic energy operator of the atom and the interaction energy.

Keywords: deviation; atom; coherent scattering; atom coherent; quantum deviation

Journal Title: JETP Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.