LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manifestations of Surface States in the Longitudinal Magnetoresistance of an Array of Bi Nanowires

Photo from wikipedia

The longitudinal magnetoresistance of the array of parallel-oriented bismuth nanowires each 100 nm in diameter grown by electrochemical deposition in nanopores of an Al2O3 membrane has been studied in magnetic… Click to show full abstract

The longitudinal magnetoresistance of the array of parallel-oriented bismuth nanowires each 100 nm in diameter grown by electrochemical deposition in nanopores of an Al2O3 membrane has been studied in magnetic fields up to 14 T and at temperatures down to 0.3 K. The resistance increases with the field and reaches a broad maximum in fields about 10 T. An anomalous increase in the resistance in weak fields is qualitatively consistent with the suppression of the antilocalization correction to the resistance, and the maximum is qualitatively associated with the classical size effect. Near the maximum at temperatures below 0.8 K, manifestations of reproducible magneto-oscillations of the resistance, which are periodic in field, have been detected. The period of these oscillations is close to a value corresponding to the passage of the flux quantum hc/e through the section of a nanowire. The Fourier analysis also confirms that the oscillations are periodic. This result is similar to the manifestation the Aharonov–Bohm effect caused by conducting surface states of Dirac fermions occupying L-valleys of bismuth.

Keywords: magnetoresistance array; surface states; longitudinal magnetoresistance; manifestations surface

Journal Title: JETP Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.