LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fermion Condensation, T-Linear Resistivity, and Planckian Limit

Photo by ludo_photos from unsplash

We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We… Click to show full abstract

We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We show that the observed scattering rate in strongly correlated Fermi systems like heavy fermion metals and high-$T_c$ superconductors stems from phonon contribution that induce the linear temperature dependence of a resistivity. The above phonons are formed by the presence of flat band, resulting from the topological fermion condensation quantum phase transition (FCQPT). We emphasize that so - called Planckian limit, widely used to explain the above universal scattering rate, may occur accidentally as in conventional metals its experimental manifestations (e.g. scattering rate at room and higher temperatures) are indistinguishable from those generated by the well-know phonons being the classic lattice excitations. Our results are in good agreement with experimental data and show convincingly that the topological FCQPT can be viewed as the universal agent explaining the very unusual physics of strongly correlated Fermi systems.

Keywords: planckian limit; resistivity; scattering rate; fermion condensation

Journal Title: JETP Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.