Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by… Click to show full abstract
Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).
               
Click one of the above tabs to view related content.