LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discrete Vortices in Systems of Coupled Nonlinear Oscillators: Numerical Results for an Electric Model

Photo by sajadnori from unsplash

Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by… Click to show full abstract

Vortex coherent structures on arrays of nonlinear oscillators joined by weak links into topologically nontrivial two-dimensional discrete manifolds have been theoretically studied. A circuit of nonlinear electric oscillators coupled by relatively weak capacitances has been considered as a possible physical implementation of such objects. Numerical experiments have shown that a time-monochromatic external force applied to several oscillators leads to the formation of long-lived and nontrivially interacting vortices in the system against the quasistationary background in a wide range of parameters. The dynamics of vortices depends on the method of “coupling” of the opposite sides of a rectangular array by links, which determines the topology of the resulting manifold (torus, Klein bottle, projective plane, Möbius strip, ring, or disk).

Keywords: nonlinear oscillators; discrete vortices; vortices systems; systems coupled; oscillators numerical; coupled nonlinear

Journal Title: JETP Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.