The effect of the cellular core on the stress intensity factor at the tip of a crack in the adhesive layer of a five-layer sandwich composite beam is investigated. A… Click to show full abstract
The effect of the cellular core on the stress intensity factor at the tip of a crack in the adhesive layer of a five-layer sandwich composite beam is investigated. A Nomex sheet is used to model the cellular core with honeycomb, square, and triangular cells. The mechanical properties of these cells are obtained by the finite element analysis supported by theoretical two- and three-dimensional equations. Based on the deduced properties, the load-displacement curve is generated for a sandwich beam under mode I fracture. The numerical findings are validated against available experimental data. It is shown that the lowest values of the stress intensity factor are observed for a core with a honeycomb structure as compared to the other two cell shapes used in this study, which are composed of equilateral triangles or squares. An increase in the wall thickness of the cells leads to an increase in the stress intensity factor.
               
Click one of the above tabs to view related content.