LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aerobic degradation of adamantanes at highly acidic conditions

Photo from archive.org

Biodegradation of alkyl-substituted adamantane derivatives (1-methyl, 1,3-dimethyl-, and 1,3,5-trimethyladamantane) by slow-growing bacteria Mycobacterium AGS10 was studied. The process was carried out under extremely acidic conditions (pH 2.5). Bacterial strain AGS10… Click to show full abstract

Biodegradation of alkyl-substituted adamantane derivatives (1-methyl, 1,3-dimethyl-, and 1,3,5-trimethyladamantane) by slow-growing bacteria Mycobacterium AGS10 was studied. The process was carried out under extremely acidic conditions (pH 2.5). Bacterial strain AGS10 was able to utilize these alicyclic hydrocarbons with a high degree of condensation and diamond-like structure, which are usually resistant to microbial transformation. Efficiency of alkyaldamantane biodegradation by the cells growing with these substrates as the sole carbon and energy sources was affected significantly by their aggregate state, which depended on molecular structure. Compared to the solid 1-methyladamantane, 1,3-dimethyladamantane, which is liquid under normal conditions, was a preferable substrate. Adamantanes in the gas condensate were generally more resistant to bacterial degradation than such markers as normal and isoprenoid alkanes. Moreover, biodegradation had no significant effect on relative distribution of the tested С11–С13 alkyladamantanes.

Keywords: degradation; highly acidic; degradation adamantanes; aerobic degradation; acidic conditions; adamantanes highly

Journal Title: Microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.