A model that describes the evolution of the size of an austenite grain of low-alloyed steels under deformation within the temperature region of stable austenite has been proposed. The model… Click to show full abstract
A model that describes the evolution of the size of an austenite grain of low-alloyed steels under deformation within the temperature region of stable austenite has been proposed. The model describes both the change in the dislocation density under deformation with consideration for relaxation processes and the deformation-induced processes of the precipitation and evolution of carbonitride phases. The effect of an ensemble of carbonitride precipitates on grain growth kinetics is also taken into account. The model serves as a basis for creating a program used to perform the calculations for low-alloyed niobium-doped steel at different temperatures, deformation rates, and initial grain sizes. The obtained results have been compared with experimental data.
               
Click one of the above tabs to view related content.