LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polar Codes with Higher-Order Memory

Photo by kellysikkema from unsplash

We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization… Click to show full abstract

We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Arıkan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n − 1) and N(n − m), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that $${P_e} = O({2^{ - {N^\beta }}})$$Pe=O(2−Nβ) is achievable for β < 1/[1+m(ϕ − 1)], where ϕ ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρm − ρm − 1 − 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Arıkan’s construction.

Keywords: order memory; codes higher; higher order; polar codes; memory

Journal Title: Problems of Information Transmission
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.