We establish an analog of Hörmander’s Theorem on solvability of the inhomogeneous Cauchy–Riemann equation for a space of measurable functions satisfying a system of uniform estimates. The result is formulated… Click to show full abstract
We establish an analog of Hörmander’s Theorem on solvability of the inhomogeneous Cauchy–Riemann equation for a space of measurable functions satisfying a system of uniform estimates. The result is formulated in terms of the weight sequence defining the space. The same conditions guarantee the weak reducibility of the corresponding space of entire functions. Basing on these results, we solve the problem of describing the multipliers in weighted spaces of entire functions with the projective and inductive-projective topological structure. Applications are obtained to convolution operators in the spaces of ultradifferentiable functions of Roumieu type.
               
Click one of the above tabs to view related content.