Let π be a set of primes and let H be a π-prefrattini subgroup of a finite soluble group G. We prove that there exist elements x, y, z ∈… Click to show full abstract
Let π be a set of primes and let H be a π-prefrattini subgroup of a finite soluble group G. We prove that there exist elements x, y, z ∈ G such that H ∩ Hx ∩ Hy ∩ Hz = Φπ(G).
               
Click one of the above tabs to view related content.