Let $ {\mathcal{R}}_{p^{k}} $ be the variety of $ 2 $ -nilpotent groups of exponent $ p^{k} $ with commutator subgroup of exponent $ p $ ( $ p $… Click to show full abstract
Let $ {\mathcal{R}}_{p^{k}} $ be the variety of $ 2 $ -nilpotent groups of exponent $ p^{k} $ with commutator subgroup of exponent $ p $ ( $ p $ is a prime). We prove the infinity of the set of the subquasivarieties of $ {\mathcal{R}}_{p^{k}} $ $ (k\geq 2) $ generated by a finite group and lacking any independent bases of quasi-identities.
               
Click one of the above tabs to view related content.