LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation and performance evaluation of stable foamy heavy oil

Photo from wikipedia

Cold production and transportation of heavy oil is currently a hotspot issue in petroleum industry. In this study, an idea that heavy oil is transported in the form of foamy… Click to show full abstract

Cold production and transportation of heavy oil is currently a hotspot issue in petroleum industry. In this study, an idea that heavy oil is transported in the form of foamy oil at room temperature was proposed. The effect of foaming agent type and concentration, foam stabilizer type and concentration, oil-water volume ratio and temperature on the foamy oil performance was explored by using Waring Blender method. A kind of stable foamy heavy oil was prepared and its property was evaluated from the quality, macro and micro, and rheology perspectives. The results indicate that the stable foamy oil can be prepared with 2.0 g/L Sodium benzenesulfonat and 1.5 g/L Dodecanol and oil-water volume ratio of 1: 1 at 20°C and 0.1 MPa. The stable foamy oil with a quality of about 70% is in the Mitchell quality range of a foaming fluid. The bubble diameter is normally distributed and the bubbles with a diameter of about 180μm are the most. In the testing range from 20 to 30°C, the foamy oil demonstrates pseudo-plastic behavior, and all the apparent viscosities at 100 1/s are less than 150 mPa s, and the viscosity reduction rates are more than 99.5%.

Keywords: foamy heavy; stable foamy; foamy oil; performance; heavy oil; oil

Journal Title: Petroleum Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.