LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Methanol Steam Reforming over ZrO2-Supported Catalysts in Conventional and Membrane Reactors

Photo from wikipedia

Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni0.2–Cu0.8 and Ru0.5–Rh0.5 catalysts supported on ZrO2 with… Click to show full abstract

Results of a study of the methanol steam reforming (MSR) catalytic process in conventional flow and membrane reactors in the presence of Ni0.2–Cu0.8 and Ru0.5–Rh0.5 catalysts supported on ZrO2 with a monoclinic, tetragonal, and cubic structure have been described. The cubic structure of zirconia has been stabilized with ceria. The samples have been characterized by X-ray diffraction analysis, transmission electron microscopy, and the BET method. It has been shown that the catalytic activity of the composites depends on the type of the metals and the structure of the support. It has been found that the Ru–Rh/Ce0.1Zr0.9O2–δ catalyst exhibits the highest activity, whereas Cu–Ni/Ce0.1Zr0.9O2–δ is the most selective. A comparative study of the MSR process in conventional and membrane reactors with Pd–Ru and modified Pd–Ag membranes has been conducted. The membrane process with a membrane based on a Pd–Ag alloy in the presence of the Ru–Rh/Ce0.1Zr0.9O2–δ catalyst provides a ~50% increase in the hydrogen yield.

Keywords: methanol steam; membrane reactors; conventional membrane; steam reforming; membrane

Journal Title: Petroleum Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.