LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photosynthesis Characteristics of Tall Fescue under Snow-Melting Agent, Acid Precipitation and Freeze-Thaw Stress

To explore the physiological response characteristics of plant photosynthesis under acid precipitation stress (A stress), snow-melting agent stress (S stress), and freeze-thaw stress (F stress) as well as their various… Click to show full abstract

To explore the physiological response characteristics of plant photosynthesis under acid precipitation stress (A stress), snow-melting agent stress (S stress), and freeze-thaw stress (F stress) as well as their various combinations, the net assimilation rate (NAR), intercellular CO2 concentration (Ci), stomatal conductance (Gs) and water use efficiency (WUE) of tall fescue (Festuca arundinacea Schreb.) under these three stresses respectively and four kinds of combined stresses were measured. The effects of these different kinds of stresses on the photosynthesis parameters were then evaluated, and the major mechanisms of main factors affecting the interactions between stresses were speculated. The experimental results indicated that both NAR and WUE decreased significantly in response to all stresses and Ci increased dramatically in response to all stresses, while Gs ascended under F stress but descended in response to A stress and S stress. The photosynthetic efficiency significantly decreased as the temperature decreased and did not clearly recover as the temperature increased. Moreover, the combination of A stress and S stress had fewer effects on photosynthesis than did the S stress alone, while the effects resulting from F stress were similar at low temperature. The major controlling mechanism is most likely the strong inhibition of photosystem II and the promotion of antioxidant enzymes resulting from acid precipitation as well as NaCl may strengthen the freezing tolerance of plants.

Keywords: stress stress; acid precipitation; stress; snow melting; photosynthesis

Journal Title: Russian Journal of Plant Physiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.