The general properties of the hopping transport of charge carriers in amorphous organic and inorganic materials are discussed. The case where the random energy landscape in the material is strongly… Click to show full abstract
The general properties of the hopping transport of charge carriers in amorphous organic and inorganic materials are discussed. The case where the random energy landscape in the material is strongly spatially correlated is considered. This situation is typical of organic materials with the Gaussian density of states (DOS) and may also be realized in some materials with the exponential DOS. It is demonstrated that the different DOS types can lead to very different functional forms of the mobility field dependence even for the identical correlation function of random energy. Important arguments are provided in favor of the significant contribution of the local orientational order to the total magnitude of energetic disorder in organic materials. A simple but promising model of charge transport in highly anisotropic composites materials is proposed.
               
Click one of the above tabs to view related content.