LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxygen Nonstoichiometry and Transport Properties of Mixed-Conducting Ce0.6–xLa0.4PrxO2–δ

Photo by enginakyurt from unsplash

The oxygen nonstoichiometry and electrical conductivity of fluorite-type solid solutions Ce0.6‒xLa0.4PrxO2–δ (x = 0.1–0.2) were studied in the oxygen partial pressure range 10–19–0.35 atm at 1023–1223 K. It was confirmed… Click to show full abstract

The oxygen nonstoichiometry and electrical conductivity of fluorite-type solid solutions Ce0.6‒xLa0.4PrxO2–δ (x = 0.1–0.2) were studied in the oxygen partial pressure range 10–19–0.35 atm at 1023–1223 K. It was confirmed that the Pr4+/3+ and Ce4+/3+ redox pairs, which determine the concentration of p- and n-type electron charge carriers, play the dominant roles under oxidizing and reducing conditions, respectively. The conductivity vs. charge carrier concentration dependencies in these conditions are almost linear. Increasing praseodymium content leads to a substantially higher hole conductivity and an expanded range of the oxygen nonstoichiometry variations at high oxygen partial pressures. Under reducing conditions when praseodymium cations become trivalent opposite trends are observed on doping.

Keywords: oxygen; xla0 4prxo2; oxygen nonstoichiometry; nonstoichiometry transport; ce0 xla0

Journal Title: Russian Journal of Electrochemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.