Vanadium pentoxide (V2O5) based electrodes for energy storage devices have captured sizeable attention in the past decade owing to their attractive physiochemical features. In the present work, flaky structured V2O5… Click to show full abstract
Vanadium pentoxide (V2O5) based electrodes for energy storage devices have captured sizeable attention in the past decade owing to their attractive physiochemical features. In the present work, flaky structured V2O5 was prepared using a single step hydrothermal route. The results from analytical investigations hold up well with the formation scheme proposed. The flaky morphology of V2O5 facilitates additional pathways for electron transport and effective ion access. When employed as a supercapacitor electrode in a neutral electrolyte, this flaky V2O5 electrode demonstrates a specific capacitance of 472 F g−1. Besides, it retains maximum capacitance at higher current density confirming its good rate performance. An asymmetric type supercapacitor using flaky V2O5 as positive electrode and activated carbon as negative electrode exhibits specific capacitance of 69 F g−1. This device shows energy density of 10 W h kg−1 within the operational window of 1 V.
               
Click one of the above tabs to view related content.